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Abstract
This paper explores the application of chaotic circuits to the encryption of analog signals.

Using nodal analysis, a nonlinear differential equation is derived to model the dynamic

behavior of an ideal chaotic circuit. The theoretical predictions made using the ideal

differential equation are then compared with experimental data. A transmitting and

receiving chaotic circuit are used to encrypt and decode an analog signal, respectively.

Because of the circuits’ chaotic behavior, the message appears as noise when observed by

those without a knowledge of each circuit. Applications and extensions of such a circuit

are discussed.

I. INTRODUCTION

Chaos theory is a relatively new sci-
ence that has gained popularity among
people ranging from scientists to the
common person. In everyday usage,
“chaos” translates roughly to “a state of
disarray” or “madness,” but in chaos the-
ory the word has a more precise defini-
tion. Although not everyone agrees on
one definition, chaotic systems are char-
acterized by certain qualities:

1. Sensitivity to initial conditions

2. Nonlinear behavior

3. The error in arbitrarily similar ini-
tial conditions grows exponentially
with time

The consequence of these qualities is
that we cannot predict the future of a
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chaotic system indefinitely, no matter
how well we measure it. Chaos theory
puts to rest the possibility of a “clock-
work universe,” advocated by Pierre Si-
mon de Laplace. Laplace proposed that
if you knew the exact state of the uni-
verse at a given time, “you could predict
its future for all time” [1]. On the con-
trary, it is impossible for us to predict far
into the future for even certain modes of
simple systems, such as a dripping tap.

Even completely deterministic sys-
tems, like the dripping tap, can yield so-
lutions that are unpredictable. Such be-
havior often arises in the study of dynam-
ical systems. A dynamical system is a de-
terministic mathematical prescription for
evolving the state of a system forward in
time. For discrete systems, a dynamical
systems takes the form of mapping func-
tions, while coupled differential equations
relate states in a continuous system. In
this paper we will focus on the continu-
ous case.
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Most differential equations are not
solvable in closed form, in general. This
leaves us with the option to use numeri-
cal approximation techniques if we want
to extract useful information from the
set of equations. Without finding an ex-
act solution, we can still use differential
equations to give us the prescription to
evolve the state of a system into the fu-
ture for a very short time. Moving the
state forward two units of time would re-
quire us to repeat, or iterate, the pre-
scription twice. To obtain an accurate
prediction into the far future, we would
need to use a small time step and iter-
ate the prescription many times. Many
tedious calculations are required to per-
form what, in principle, is a relatively
straightforward calculation. Even a cen-
tury ago, such a task was unfeasible.

Computers are very good at perform-
ing millions of arithmetic calculations
very quickly. This is why the dawn of
high speed computers gave scientists the
first glance at chaotic behavior in its en-
tirety. Finally, the ability to predict far
into the future was within our grasp,
or so we thought. As scientists began
to examine certain nonlinear dynamical
systems, interesting behavior emerged.
They found that some systems have very
different long-term behavior, despite ar-
bitrarily similar initial conditions. Even
the amount of significant figures held by
the computer greatly impacted the possi-
ble future for the system. Extreme sensi-
tivity to initial conditions is the trade-
mark of chaotic systems. Because we
cannot measure anything with infinite
precision, the true future of chaotic sys-
tems will always diverge from our predic-
tions given enough time.

Many real world systems can behave
chaotically. A few examples include the
weather, planetary orbits, coupled pen-
dula, population dynamics, fluid dynam-
ics, and electrical circuits. This corre-

sponds to what we experience on a daily
basis. Life, in general, is complicated
and uncertain. The future is not easy
to predict. Chaos is the gateway from
the clockwork, Newtonian universe to
the seemingly random and unpredictable
universe that we can all relate to.

Despite its unpredictability, there is
an order to chaos. Somewhat surpris-
ingly, chaotic systems can be coupled so
that they evolve in synchrony. One in-
credible application of coupled chaotic
circuits is to the field of cryptography.
This idea has been explored previously
using coupled chaotic circuits [2] [3] [4].
Chaotic circuits evolve in seemingly ran-
dom patterns but coupled chaotic cir-
cuits can tell the difference between two
“different kinds” of randomness. In one
mode, the circuits can synchronize. In
the other they cannot. Switching be-
tween these two modes can be a sort of
message. Because the circuit is behav-
ing effectively randomly, one would not
be able to tell the difference in the two
modes, in principle. Only with a par-
ticular coupled circuit could one deter-
mine the synchronous and asynchronous
modes and thus, the encrypted message.
Each mode can be interpreted as a 0 or a
1 in binary code, which can then be used
to reconstruct the message.

In this paper, we examine in detail a
simple electrical circuit that can exhibit
chaos. To do so, we begin by building a
circuit that is modeled by a third-order
nonlinear differential equation. First, we
will derive the theoretical model using
nodal analysis and assess the accuracy of
its predictions. Second, we will couple
two “identical” chaotic circuits in an at-
tempt to hide binary signals amongst the
chaos. The speed and accuracy of the de-
cryption mechanism will be analyzed. Fi-
nally, we will conclude with possible ex-
tensions of our work.
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FIG. 1: The chaotic circuit described in [5]. Depending on the value of Re, the
circuit displays either periodic or chaotic behavior. Ideally, R = Ri = 13.23kΩ for

15 ≤ i ≤ 20 and C = Cj = 10µF for 4 ≤ j ≤ 6. Primed variables represent
derivatives with respect to the dimensionless variable τ = t/RC.

II. ANALYSIS

A. The Circuit

To exhibits chaos, a circuit must in-
clude components that cause nonlinear-
ity. We use a relatively simple circuit, de-
scribed in [5]. This circuit contains three
integrating op-amps, a summing op-amp,
and a subcircuit, D(x), which contains an
arrangement of diodes and another op-
amp. The nonlinearity of the circuit is
derived from the subcircuit, D(x). D(x)
compares the voltage x to ground and
takes the minimum.
Quantitatively,

D(x) = −R12

R11

min (x, 0). (1)

Using nodal analysis examined in the
Appendix, we can determine that the dif-

ferential equation has the form

...
x = a1ẍ+ a2ẋ+ a3D(x) + a4, (2)

where ẋ = dx/dt. If we treat each resis-
tor as distinguishable and use the number
scheme in Fig. 1, it can be shown that

a1 = − 1

ReC4

,

a2 = − R17

R15R16R18C4C5

,

a3 =
R17

R15R16R19R20C4C5C6

,

a4 = − 1

R00R16R20C4C5C6

V0, (3)

where

Re =

(
1

R14

+
1

R13 +Rv2

)−1
. (4)

If we include the additional simplifica-
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FIG. 2: Bifurcation plot for the parameter Re. The circuit follows a period
doubling route to chaos. Because 0 ≤ Rv2 ≤ 100kΩ, 13 ≤ Re ≤ 28kΩ for our

circuit.

tions

R ≡ R15 = R16 = R17

≡ R18 = R19 = R20,

C ≡ C4 = C5 = C6,

τ ≡ t

RC
,

x′ ≡ d

dτ
, (5)

the model simplifies to

x′′′ = − R

Re

x′′ − x′ +D(x)− R

R00

V0, (6)

which agrees with [5]. R11 and R12 are
chosen so that R12/R11 ≈ 6.

It is the equivalent resistance, Re,
that determines the behavior of the cir-
cuit. For certain values, the circuit
varies periodically, while for others it is
chaotic. Figure 2 sums up the transitions

Period Exp. (kΩ) Theory (kΩ) % Error
1→ 2 15.16 15.22 .379
2→ 4 18.62 18.68 .354
4→ 8 19.28 19.34 .357
8→ 16 19.42 19.48 .299

TABLE I: Theoretical and experimental
bifurcation points. All legible

bifurcation points agree to within .4%.

from periodicity to chaos in a bifurca-
tion plot. Experimental bifurcation val-
ues were gathered and compared to the
predictions made by Fig. 2. This analy-
sis is shown in Table I. Agreement be-
tween theory and experiment is excep-
tional, with no percent error over .4%.
Other bifurcations beyond the period 8
to period 16 transition were experimen-
tally indistinguishable from chaos.
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(a) Re = 13.85kΩ (b) Re = 16.40kΩ

(c) Re = 19.40kΩ (d) Re = 20.58kΩ

FIG. 3: Experimental phase portraits (dots) overlaid with theoretical phase
portraits (lines). Measured values for Re were used for theoretical predictions with

the results showing incredible agreement. Both x and x′ are in volts.

Phase portraits of x′ vs x were gener-
ated experimentally using an oscilloscope
and theoretically using Mathematica. A
data smoothing algorithm in Mathemat-
ica cleaned up our experimental data
points and allowed for better agreement
with theory. The accuracy of our model
and the precision with which each circuit
component was measured yielded great
agreement between theory and experi-
ment. Results are shown in Fig. 3.

The accuracy of our model is due

in great part to the fantastic job that
the subcircuit, D(x), does at modeling
Eq. (1). As can be seen in Fig. 4, Eq. (1)
yields a very accurate representation of
the experimental results.

B. Experiments in Cryptography

Contrary to what one first might ex-
pect, chaotic systems can become syn-
chronized. If two or more identical
chaotic systems are coupled, they can
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FIG. 4: Experimental measurement of
the function D(x). D(x) and x are in

volts.

evolve identically with time. This phe-
nomenon is known as complete synchro-
nization.

Complete synchronization can be uti-
lized to encrypt signals. Because chaotic
systems are so unpredictable, decoding a
message from a chaotic signal may at first
seem like a lost cause. As shown in [2],
[3] and [4], cryptography through chaotic
circuits is possible, but due to speed and
accuracy predictions, it may not be prac-
tical. Whether or not two circuits are
completely synchronized or not can be in-
terpreted as a 1 or a 0, respectively. To
completely synchronize two chaotic cir-
cuits, they must be identical and coupled.
Thus we built and coupled two nearly
identical circuits: a transmitter and re-
ceiver.

Coupling the transmitter and receiver
while analyzing their synchronization
state took a complex connection of many
subcircuits. All of the relevant circuit di-
agrams can be seen in Fig. 8. A more
detailed explanation of the circuit in its
entirety is given in Appendix B.

The transmitting and receiving cir-
cuits function similarly to the circuit in
Fig. 1. Each circuit has a minor but im-
portant difference. The circuit diagrams

for the transmitter and receiver can be
seen in Figs. 8a and 8f, respectively. Be-
fore the details are discussed, we must
adjust our current notation. Following
the notation in Fig. 1, let x→ x1 for the
transmitting circuit and x → x2 for the
receiver.

The first difference is related to the
way in which the transmitter and receiver
are coupled. The coupling manifests it-
self in the voltage that is fed to the non-
linear subcircuit of the receiver. Rather
than receiving a voltage of x2, the cou-
pling circuit shown in Fig. 8e is used
to feed D(x) a voltage of approximately
.8x1 + .2x2 instead. This couples the
transmitter and receiver so that the state
of the receiver is affected by the state of
the transmitting circuit.

In the transmitting circuit, Rv2 is re-
placed with a more complicated arrange-
ment of resistors and transistors labelled
RT . RT can switch between two discrete
resistance values that are controlled by
an Arduino. In one mode, the receiv-
ing circuit completely synchronizes with
the transmitter, while in the other it
does not. These two modes can most
clearly be distinguished when one exam-
ines the difference x2−x1. In the synchro-
nized mode, their difference has a very
small amplitude. When unsynchronized,
x2 − x1 has a larger amplitude.

In any communication situation that
one could conceivably consider realistic,
the transmitter and receiver are con-
nected to different power sources. An en-
coded message is more useful when it is
sent many miles away as opposed to when
the transmitter and receiver are only a
few inches apart. To build a circuit that
could send a signal between two power
sources that had been offset by a voltage,
Vd, was one of our main priorities.

To make the potential offset essen-
tially irrelevant, we employed a method
known as differential signaling. A pair
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FIG. 5: Experimental twisted pair:
x+ Vd and −x+ Vd. The transmitter is
offset by Vd ≈ 3V. The ordinate axis is
defined relative to the receiver’s ground.

of signals is sent from the transmitter,
x + Vd and −x + Vd, as can be seen in
Fig. 5. On the receiving end, the dif-
ference of the pair taken with respect to
the receiver’s ground, g2. This yields 2x,
which can then be halved to obtain x rel-
ative to the new ground. The circuit that
performs these operations can be seen in
Fig. 8c.

The signal, x1, can then be accu-
rately compared to x2 via their difference
x2 − x1. The difference is then trans-
formed into a binary signal using an ideal
absolute-value circuit, low pass filter and
comparator. Finally, the signal reaches
an Arduino, which then reads the digi-
tal signal and translates it back into a
meaningful message. Figure 8d shows the
many subcircuits used in this analysis.
The original signal is reconstructed very
accurately by the decrypting circuit and
Arduino. The original and deciphered bi-
nary signal is shown in Fig. 6.

From different grounds and power
supplies, our circuit accurately sent and
reconstructed a message with under a
1% error despite an offset voltage of 3V.
Because of the chaotic “noise,” coupled
chaotic circuits have the potential to be

FIG. 6: Original binary signal (gray)
plotted against the decrypted signal
(black). The 3V offset is evident, yet

the signal is decrypted accurately.

a powerful encryption method.

III. FINAL WORDS

A. Extensions

The ability to send messages from dif-
ferent power supplies was a big step on
the way to an effective circuit, but there
is still much work to be done before our
circuit could be used as a practical means
for encrypted communication. Two crite-
ria must be met for an effective encryp-
tion:

1. The phase portrait for the trans-
mitting circuit cannot differ greatly
between sending a zero and a one.
If the phase portraits are distinct
enough, one could recover the sig-
nal despite the chaotic noise.

2. The modes in which the binary
signal is sent must fall within a
chaotic regime.

Although it seems simple enough, in
practice it can be difficult to get a reli-
able signal in a chaotic regime without
differing the phase portrait greatly. Ad-
mittedly, we simply tried RT values until
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(a) (b)

FIG. 7: Phase portraits for a zero and one in binary code, respectively. There is
only ∼.3V difference in both width and height between the two states.

we found an effective pair to create bi-
nary code. Much more research can be
done on the most effective choices for RT

such that zeros and ones are distinguish-
able to the receiver, but not to others.
The two modes used in our analysis are
plotted side by side in Fig. 7.

Another area in which the circuit can
improve is in its speed and accuracy. It
took multiple minutes to send a few para-
graphs of text. If the speed at which the
message is sent is increased, the signal is
not clear enough to decipher by the de-
crypting circuit. In today’s society, this
is not an effective means of communica-
tion despite the power of the encryption
message.

A natural extension is the construc-
tion of a transmitter circuit that could
send wireless messages to a receiver. The
transmitter and receiver already operate
on different grounds, with the only con-
nection being the twisted pair. Thus it is
not a farfetched idea to send the binary
signal wirelessly between the circuits.

Throughout the scope of this research,
we have assumed that hiding a binary
signal amongst chaos is an effective en-
cryption method. For a thorough anal-
ysis, we must test the validity of such a
claim. If phase portraits or other repre-
sentations of the data are unique, there
may be ways to “work backwards” from
intercepted data to recreate the circuit
from the plot. If the representations of
data are not unique, one could engineer a
similar circuit that could decrypt the bi-
nary message without a deep knowledge
of the original. Both possibilities could
compromise the integrity of our method
and should be examined.

B. Conclusions

Since its discovery in the 20th century,
chaos theory has fascinated people from
all walks of life. One of its many appli-
cations is to the world of cryptography.
We designed and build chaotic circuits
based on [5] that can send and receive
messages even when the transmitter and
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receiver are connected to different power
supplies. The transmitting and receiv-
ing circuit can synchronize and desyn-
chronize their chaotic modes to send a
binary code. Messages were sent with un-
der a 1% decryption error but the limit of
speed and reliability of the transmission
have yet to be realized.

Chaotic circuits can provide a cheap
and accurate glimpse of chaotic systems
at an undergraduate level. Through the
analysis, we have generated and used
phase portraits, bifurcation points, nodal
analysis and circuit design with great
agreement between theory and experi-
ment. Chaos theory bridges the pre-
dictable world of the physics laboratory
with the seemingly random and disor-
dered world associated with our every-
day experience. Chaotic systems have
only begun to show their usefulness and
studying their properties will continue to
give us a greater insight into the world in
which we live.

Appendix A: Nodal Analysis

This appendix derives Eqs. (2)-(3).
Components are labelled as in Fig. 1.
Because each op-amp creates a virtual
ground, our calculations are greatly sim-
plified. Via the “golden rules” for op-
amps, 0 = V11 = V13 = V15 = V17 = V19.
Because there are no current sources, we
apply

Vnode
∑
j

1

Rj

=
∑
j

Vsj
Rj

+
∑ Vj

Rj

(A1)

at each node of interest. Following these
steps, and letting x = V8, we arrive at

the node equations

V1 = −R20C6ẋ,

V2 = R16R20C5C6ẍ,

V3 = −R15

( V0
R00

+
V2
R14

+
V2

R13 +Rv2

+ C4C5C6R16R20
...
x
)
, and

V3 = −R17

R18

V1 −
R17

R19

D(x). (A2)

Solving this system of equations yields
Eqs. (2)-(3).

Appendix B: Subcircuits

The circuit is split into five basic
parts: the transmitter, the twisted pair,
the decrypter, the coupler, and the re-
ceiver as seen in Figs. 8a, 8c, 8d, 8e,
8f, respectively. The transmitting circuit
contains RT , which is the subcircuit that
generates the binary signal. RT is shown
in Fig. 8b. An arduino sends a binary
message: 0V for a 0, and 5V for a 1.
When a 0 is sent, the transistors act as an
open. When a 1 is sent, the transistors
act as a short. This changes the parame-
ter RT and effectively switches the receiv-
ing circuit between two chaotic modes.

The decrypting circuit is split into
four parts. In part (a), x1 and x2 are sent
to a differential amplifier, which takes
their difference: x2− x1. They then pass
through (b), an ideal absolute value cir-
cuit. When the value of x2 − x1 is pos-
itive, the circuit acts as a unity buffer.
When the value of x2 − x1 is negative,
the circuit acts as an inverting amplifier.
Part (c) is simply a low pass filter. Only
low frequencies pass through, while the
high frequencies are removed. Part (d) is
the comparator. We first pick a threshold
voltage Vth. If x2−x1 is above Vth, it be-
comes amplified to 5V. If x2−x1 is below
Vth, it is suppressed to 0V. This creates
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the binary signal that can be read by the
Arduino.

The coupling circuit uses a differen-

tial amplifier to take the sum .8x1 + .2x2,
which is then fed into the nonlinear sub-
circuit, D(x), in the receiving circuit.
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FIG. 8a: Transmitting Circuit

FIG. 8b: RT subcircuit of Fig. 8a. The transistors act as a short when the Arduino

sends a 5V signal but act as an open at 0V.

FIG. 8c: Subcircuit that generates a twisted pair. The twisted pair is then used to

remove the reference to the transmitter circuit’s ground, g1.
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FIG. 8d: Decrypting Circuit. The function of the shaded subcircuits are explained in

Appendix B. RC1 = 100kΩ, RC2 = 200kΩ, RC3 = 10kΩ, and CC1 = 10µF.

FIG. 8e: Coupling Circuit. Resistor values are defined as in Fig. 8d.

FIG. 8f: Receiving Circuit. Synchronizes with the receiving circuit in Fig. 8a.

FIG. 8: Final circuit used for our binary message analysis. Its functionality is
explored in Sec. II B and analyzed more deeply in Appendix B.
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